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Abstract
In this paper the effects of including position-dependent stiffness coefficients
in the coupled effective Hamiltonian models appropriate for both complete
and critical wetting are considered. This analysis is motivated by a nonlinear
functional renormalization group approach applied for the first time to two-
field interface models, and cast in a simple matrix form. In particular we
(i) determine the renormalization group flow of the capillary parameter and
confirm that its renormalization at complete wetting is preserved at all orders and
(ii) demonstrate that the stiffness instability mechanism is robust, and indeed
strengthened, under the inclusion of coupling terms near critical wetting.

PACS numbers: 6845G, 6460A, 8265D

1. Introduction

In recent years there have been a number of developments in the field of wetting transitions
for systems with short-ranged forces [1]1. These advances have primarily been driven by
inconsistencies between Monte Carlo simulation studies and theoretical renormalization group
(RG) predictions for critical wetting in three dimensions, and by the failure of simple interface
models to correctly describe known correlation function behaviour [2, 3]2.

Although progress has been made in understanding these various problems individually
by introducing appropriately modified interface Hamiltonian models, a unified analysis which
incorporates all of the changes has been lacking. In particular, a detailed study of the effect
of coupling terms on fluctuation behaviour has not been possible due to the absence of a
suitable nonlinear RG scheme which could be applied to interface models including position-
dependent stiffness coefficients. In this paper we introduce such a scheme suitable for the
coupled ‘two-field’ models that are a necessary ingredient of a complete theory. Using this
tool we are able to show that the renormalization of the wetting parameter, which has been
a crucial feature in understanding Monte Carlo simulation results, remains robust under the

1 For a general review of wetting, see, for example, [1].
2 For a comprehensive discussion, see [2].
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inclusion of position-dependent stiffnesses. Furthermore, close to critical wetting we show
that the various components of the stiffness matrix couple in a complex fashion not accessible
in linear studies. To quantify the importance of this coupling we derive an ‘effective one-field’
interface model and find that the Fisher–Jin stiffness instability mechanism is strengthened, an
effect directly attributable to the original coupling terms.

The remainder of the paper is organized as follows. In the next section we briefly
recall some pertinent recent advances in effective interface Hamiltonian theories for wetting
transitions. In section 3 a nonlinear RG scheme for an arbitrary coupled model is introduced,
the key results of which can be conveniently written in terms of the stiffness matrix. In section 4
this scheme is then applied to study the effect of position-dependent stiffnesses and coupling
on complete and critical wetting. Finally a discussion and summary of the main results is given
in section 5.

2. Effective interface Hamiltonians

In this section we highlight the relevant recent advances in the theory of effective interface
Hamiltonian models applied to wetting transitions. At such a transition the thickness, l, of an
adsorbed layer diverges as some parameter is varied towards its critical value. For concreteness
consider a semi-infinite system with a wall in the plane z = 0. Using magnetic notation we
assume that in zero bulk field (h = 0) there are two coexisting bulk phases (α ≡ ‘downspins’,
β ≡ ‘upspins’) while the wall preferentially favours the β-phase. If wetting occurs in a given
system one can identify a corresponding sub-critical wetting temperature TW . The divergence
of the thickness l may occur discontinuously at TW indicating a first-order wetting transition,
or l may diverge continuously as T → TW indicating a continuous or second-order transition.
In this latter case we can consider two different routes to approach wetting: (i) critical wetting
corresponding to letting the temperature T approach TW from below while maintaining bulk
coexistence h = 0−, and (ii) complete wetting corresponding to letting the bulk field approach
zero from the negative side at some fixed temperature T > TW . For systems with short-ranged
forces the upper critical dimension for both transitions is d = 3 so that the effect of fluctuations
is important for this most physically interesting case. In order to enable RG studies of these
fluctuation effects it has proved convenient to introduce simple effective interface models,
which are functionals of the layer thickness. The traditional starting point is the capillary wave
model [4–6]

HCW[l] =
∫

dy { 1
2 
αβ(∇l)2 + W(l)} (1)

where W(l) ≡ W(l; T , h, . . .) is the binding potential or effective wall–interface interaction,
which takes the form W(l) = h̄l + a(T , h, . . .)e−κl + be−2κl + · · · . Here h̄ ∼ −h, κ ≡ 1/ξb is
the inverse bulk correlation length of the wetting phase, the parameter a ∼ (T − T MF

W ) in zero
bulk field (where T MF

W is the mean-field (MF) critical wetting temperature) and b is strictly
positive in the vicinity of a continuous transition. At the MF level the location of the interface
is simply given by the minimum of W(l). The coefficient of the gradient term in (1) is the
interfacial stiffness, which is approximated by 
αβ , the stiffness of a free αβ interface.

2.1. The Fisher–Jin stiffness instability mechanism

More recently Fisher and Jin (FJ) have questioned the phenomenological expression (1) and
in particular the presence of an l-independent stiffness coefficient [7,8]. Instead they aimed at
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deriving an interface model from an underlying bulk theory, typically the Landau–Ginzburg–
Wilson (LGW) model

HLGW[m] =
∫

z�0
dr { 1

2 K(∇m)2 + �(m) + δ(z)φ1(m)} (2)

where m(r) is the bulk order parameter and �(m) is the bulk free-energy density, which
has a double-well form. The surface potential φ1 is typically represented by a truncated
expansion of the form φ1(m) ≈ −h1m + cm2/2, where h1 and c are the surface field and
enhancement respectively. A constraint is introduced which restricts order-parameter profiles
to those consistent with a given interface configuration l(y). The interface Hamiltonian is then
defined in a saddle-point treatment viaHFJ[l] = minl

m(r) HLGW[m], where minl
m(r) identifies the

profile m(r) which minimizes HLGW subject to the interface constraint. The simplest criterion
to define the interface is a crossing constraint which demands that m(z = l(y), y) = mX,
where typically the crossing magnetization mX is set to zero. Using this approach FJ find

HFJ[l] =
∫

dy { 1
2 
(l)(∇l)2 + W(l)} (3)

where the stiffness coefficient 
(l) now displays a position dependence. In terms of planar
constrained profiles mπ (z; l), this contribution may be written as


(l) = 
αβ + �
(l) =
∫ ∞

0
dz

(
∂mπ (z; l)

∂l

)2

(4)

where we have explicitly identified the position-dependent contribution, �
(l), which must
vanish in the limit l → ∞. Similarly, the binding potential W(l) is given (up to l-independent
terms) by

W(l) =
∫ ∞

0
dz

{
1

2
K

(
∂mπ (z; l)

∂z

)2

+ ��(mπ )

}
+ �1(mπ (z = 0; l)). (5)

Here ��(m) �min denotes the minimum value of �(m).
The crucial difference between (3) and the capillary wave model (1) is the position-

dependent stiffness contribution3 �
(l), which at leading orders can be expanded �
(l) =
s(T , h, . . .)e−κl − q(κl)e−2κl + · · · where s ∼ (T − T MF

W ) and q > 0. The importance of this
term is seen through RG analyses, which reveal at linear order that the flows of W and �


are coupled. In particular, for sufficiently large values of the renormalization parameter t , one
can consider just an effective binding potential of the form

W
(t)

eff (l) ≈ W (t)(l) +
ω"2

2κ2
�
(t)(l) (6)

in d = 3. Here " is a non-universal momentum cutoff implicitly contained within the interface
model, while the capillary parameter ω is defined as

ω = kBT κ2

4π
αβ

(7)

and is estimated at ω ≈ 0.8 near the transition. Thus, if the relative magnitude and sign of
terms in W and �
 remain under renormalization, we observe that the next-to-leading-order
term in the expansion for Weff(l) arises through the �
(l) contribution and is negative, which
provides a potential instability mechanism for wetting. In this way a bare critical wetting

3 We note that the binding potential W(l) derived via the FJ route also contains extra terms not present in the traditional
expansion as given after equation (1). However, they are not found to qualitatively affect critical behaviour at the MF
level or beyond.
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transition may be fluctuation-induced first order and a recent numerical nonlinear RG analysis
provides evidence suggesting that this is indeed the case in d = 3 for the currently accepted
values of ω [9].

This observation is important in light of earlier RG calculations based upon the capillary
wave model. Those studies predicted dramatic non-universal behaviour depending strongly
on the value of the capillary parameter [4–6]. These predictions have been supported by
Monte Carlo simulations of a lattice version of the capillary wave model [10], and by an
approximate nonlinear RG analysis of (1) [11]. However, as yet no evidence of such behaviour
has been found in Monte Carlo simulations of the underlying model [12], raising doubts over
the applicability of the effective interface approach. The FJ stiffness instability mechanism
provides an alternative prediction, which may help explain the earlier inconsistencies—future
simulation studies focusing on response functions close to the unbinding interface should
further clarify the status of the various RG predictions [13].

2.2. Multi-field interface models and correlation functions

Another concern with the capillary wave model has been raised due to its inability to recover
known expressions for MF correlation functions. If one is to put faith in the predictions of
an interface model used in fluctuation studies it is clearly desirable that the model should
give results at MF level consistent with those found from the underlying bulk model. One of
the most frequently studied properties of these models is the connected correlation function
G(r1, r2) ≡ 〈m(r1)m(r2)〉−〈m(r1)〉〈m(r2)〉 and in particular its transverse Fourier transform

G(z1, z2; Q) =
∫

dy12 eiQ·y12 G(r1, r2) (8)

where y12 is the parallel displacement of the points r1 and r2, and zi is the perpendicular
displacement of point ri from the wall. Here we focus on the complete wetting transition in
the LGW model, although similar comments apply to critical wetting [3]. If one considers
the case when z1 and z2 are both near the αβ interface then the MF correlation function has
a simple Lorentzian form G(z1, z2; Q) ≈ G(z1, z2; 0)/(1 + ξ 2

‖ Q2), where ξ‖ is the transverse
correlation length of the interface. In contrast MF studies of correlation functions for particle
positions near the wall (z1, z2 ≈ 0) have revealed unexpectedly rich behaviour [14], with, for
example,

G(0, 0; Q) ≈ kBT m′
1

2

m′
1(cm′

1 − m′′
1) + Q2

[

wβ − φ1(m1) + 
αβ +fsing

1+ξ 2
‖ Q2

] (9)

where m1 ≡ m(z = 0) and here primes denote differentiation with respect to z. Here

wβ − φ1(m1) represents the stiffness of the wall–β-phase interface, and fsing is a singular
contribution to the total wall–α-phase stiffness, 
wα , such that 
wα = 
wβ + 
αβ + fsing.
The structure factor (9) is interesting in that it displays a crossover from coherent to intrinsic
behaviour; a full discussion can be found in [14]. This behaviour has also recently been
observed in the results of extensive lattice gas model calculations [15]4. Here our aim is
simply to motivate the introduction of a multi-field interface Hamiltonian. To this end we note
that both the capillary wave model and the FJ model with mX = 0 are unable to recover the
non-Lorentzian structure factor at the wall (although both models are suitable for the study of
correlations near the unbinding interface).

4 These authors focus primarily on short-wavelength behaviour; however, reanalysing their data for the long-
wavelength case (Q → 0) reveals behaviour fully consistent with (9).



Coupling of interfacial and spin-like coordinates in effective Hamiltonians for complete and critical wetting 965

Parry showed that for the FJ model this problem may be overcome if one makes use
of the freedom of choice of reference value mX [16]. In particular he showed that if m̃(z)

is the (planar) MF profile found from minimizing (2) without constraint, then the FJ model
derived with the choice mX = m̃(z1) will exactly rederive the MF structure factor G(z1, z1; Q).
The failure of the usual models to derive the surface structure factor may be understood by
noting that in the complete-wetting limit there are two distinct behaviours for surfaces of
fixed magnetization mX. If mX lies between the bulk magnetizations of the two phases (i.e.
mβ > mX > mα) then the corresponding interface diverges in the limit of complete wetting and
will provide a qualitatively sensible representation of the unbinding αβ interface. On the other
hand if the interface lies in the lip found in a complete-wetting profile (so m̃1 > mX > mβ)
then the interface remains bound close to the wall in the wetting limit. In order to derive
an interface model which correctly recovers known behaviour near the wall and unbinding
interface simultaneously we are led to introduce a two-field interface Hamiltonian

H(2)[l1, l2] =
∫

dy { 1
2Σµν(l1, l2)(∇lµ) · (∇lν) + W2(l1, l2)} (10)

where µ, ν = 1, 2 and a summation is implied by a repeated suffix. Here we assume l1 and
l2 are surfaces of fixed magnetization mX

1 and mX
2 respectively, with typically mX

1 ≈ m̃1 and
mX

2 = 0. Note that in the coupled theory the stiffness coefficient is replaced by a stiffness matrix
Σ(l1, l2) while the binding potential W2 has two contributions, W2(l1, l2) = U(l1)+W(l2 − l1),
where W is similar in form to the capillary wave binding potential. The additional term U(l1)

simply acts to bind the lower surface to the wall and may safely be expanded about its minimum
value l0 ≈ 0, thus U(l1) ≈ r0l2

1/2.
Formally one may exactly derive the two-point structure factor G(z1, z2; Q) from the two-

field model with mX
1 = m̃(z1) and mX

2 = m̃(z2) [14] while for n-point correlation functions one
should consider an n-field interface model. However, we stress that there are only two distinct
behaviours for surfaces of fixed magnetization and so the two-field model (10) is sufficient
at a qualitative level. Furthermore, for the fluctuation behaviour discussed in the following
sections the inclusion of further fields has no significant effect and so from here on we restrict
our attention to two-field models.

2.3. Renormalization of the capillary parameter

The inclusion of an extra field in the effective Hamiltonian model is also found to have an
impact on the predictions for critical behaviour near complete wetting in three dimensions.
This is most clearly observed in the critical amplitude describing the average thickness of the
adsorbed layer 〈l〉. Specifically we define the dimensionless adsorption amplitude

θ = lim
h→0−

[
κ〈l〉

ln |h|−1

]
(11)

where recall the limit h → 0− describes the approach to complete wetting. At MF level θ = 1,
while when fluctuation effects are included via an RG treatment of the capillary wave model
one finds that θ depends explicitly on the capillary parameter ω given by (7). In particular [5]

θ =
{

1 + ω/2 0 < ω < 2√
2ω ω > 2.

(12)

Calculations based upon a simple cubic Ising model estimate ω ≈ 0.8 in the range 0.6Tc–Tc

decreasing for smaller values of temperature [17], and hence provided we are sufficiently above
the wetting temperature the capillary wave model predicts θ ≈ 1.4.
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In order to determine the effect of including a second field in the interface model it is
necessary to repeat the RG calculation for the two-field model. This has been done in the
case where the position dependence of the stiffness coefficients is ignored and the two-field
binding potential is expanded as described in section 2.2. Hence the capillary wave model (1)
is replaced by

H(2)[l1, l2] =
∫

dy { 1
2 
αβ(∇l2)2 + 1

2 
̃wβ(∇l1)2 + 1
2 r0l2

1 + W(l2 − l1)} (13)

where 
̃wβ = 
wβ − φ1(m̃1) is the stiffness of the wall–β-phase interface. In this case the
critical behaviour is determined from the renormalized binding potential, and hence we must
compare the RG flow of W(l2 − l1) with the flow of W(l) in the capillary wave model. To
this end it is sufficient to concentrate on the RG flow equations for the appropriate binding
potentials5.

Here we consider a simple linear functional RG applied in three dimensions and skip the
mathematical details, which can be found elsewhere (see e.g. [6, 18]). If we let t denote the
renormalization parameter then for the capillary wave model the binding potential flow is given
by [

− ∂

∂t
+ 2 + ω

∂2

∂l2

]
W (t)(l) = 0 (14)

where the presence of the capillary parameter in the flow equation directly yields the ω-
dependence of the critical amplitude θ . Repeating the analysis for the two-field model gives[

− ∂

∂t
+ 2 + (ω + ω1)

∂2

∂�l2

]
W (t)(�l) = 0 (15)

where �l ≡ l2 − l1 and where we define

ω1 = kBT κ2

4π(
̃wβ + r0/"2
1)

(16)

in analogy with (7), with "1 the implicit momentum cutoff of the lower field l1. Comparing (14)
and (15) reveals that the only effect of including the second field is an effective renormalization
of the capillary parameter with ω → ωeff = ω + ω1. Inclusion of additional fields does
not further renormalize the capillary parameter since one finds including two or more fields
representing surfaces of fixed magnetization which display the same behaviour at the transition
gives the same contribution as a single field of that type, and as discussed earlier there are only
two distinct types of behaviour for surfaces of fixed magnetization.

The contribution ω1 has been estimated [18] and is found to be ω1 ≈ 0.7 so that ωeff ≈ 1.5.
The two-field model result for the adsorption amplitude θ is simply (12) with ω replaced by ωeff

and hence this model predicts θ ≈ 1.75. Interestingly this amplitude has been independently
determined by Binder et al using Monte Carlo simulations of finite-size effects in a three-
dimensional Ising model [19]. Their results indicate that for temperatures deep into the
complete-wetting regime θ = 1.72 ± 0.1, which cannot be accounted for by MF theory
or the capillary wave model but which is consistent with the two-field prediction above.

We comment that the renormalization of the capillary parameter which is central to this
result has also been shown in nonlinear RG studies where the position dependence of the
stiffness coefficients has again been ignored [20], and in Monte Carlo simulations of a discrete
version of the interface model [21]. Hence both critical amplitude analyses and correlation
function studies give strong support for the two-field model (10).

5 An alternative approach is to directly examine the solutions W (t)(l) which are found upon integrating the flow
equations. The same conclusions are found in both cases and so for convenience we choose the flow equations as our
point of reference in this paper.
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TW TC

critical
wetting

βm

mα

βm

mα

h = 0

(I)(II)

h

T

(a)

(b) m(z)

z

Case (I)

(c)
m(z)

z

Case (II)

Figure 1. (a) Schematic wetting phase diagram highlighting the approach to critical wetting and
two routes to complete wetting (bulk field h → 0), the first (I) for temperature T well above TW

and the second (II) close to TW . The corresponding order parameter profiles m(z) are shown in (b)
and (c). Note that the profile flattens at the wall as we approach the wetting temperature.

2.4. Proper collective coordinates

While the simple two-field theory discussed above has proven successful in describing complete
wetting well above the wetting temperature, problems arise in applying the model close to TW

or for critical wetting. These problems are directly associated with the momentum cutoff of
the lower field "1. The standard interpretation of interface models dictates that the use of

an interfacial-like collective coordinate is only valid if the cutoff "1 �
√


̃wβ/kBT [1, 22].
Within a piecewise parabolic approximation for the free-energy density �(m), the surface
tension is found to vanish near TW as 
̃wβ ∼ (T − TW )2 [3]. Indeed this result remains valid
providing one may locally expand �(m) around mβ in a parabolic fashion. In these cases we
can associate the vanishing of the surface tension with the flattening of the order parameter
wetting profile at the wall near TW (see figure 1). From quite general graphical construction
arguments, the approach to the critical wetting temperature TW involves a flattening of the
order parameter profile at the wall with m1 → mβ and m′

1 → 0 as T → TW (see [5, 23]).
In particular m′

1 ∼ (T − TW ) so that, within a parabolic approximation at least, 
̃wβ ∼ m′
1

2.
We interpret this result as indicative of a decoupling occurring between fluctuations of the
unbinding interface and those at the wall near the wetting temperature. However, the two-field
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m(z)

z

m(z)

z

(a)

(b)

l

l + δ1 

σ

σ + δσ

Figure 2. Schematic representation of the effect upon the constrained order-parameter profile
m(z) of pertubations of (a) an interfacial-like collective coordinate l → l + δl, and (b) a spin-like
collective coordinate σ → σ + δσ .

model (10) is insufficient to quantitatively describe the crossover from complete to critical
wetting-like behaviour because of the vanishing of "1.

This problem has been elegantly resolved by Parry and Swain [3], who recognized that the
correlation function structure described in section 2.2 may be recovered using a generalized
two-field model

H(2)[X1, X2] =
∫

dy { 1
2Σµν(X1, X2)(∇Xµ) · (∇Xν) + W2(X1, X2)} (17)

where X1(y) and X2(y) are some choice of collective coordinates representing order-parameter
fluctuations near the wall and unbinding interface respectively. The interfacial choice l(y) is
one option; a ‘spin-like’ collective coordinate σ(y) implemented by constraining the order-
parameter profile to satisfy m(y, zX) = σ(y) for some fixed zX would be another. The reason
for describing the collective coordinates as interfacial-like (l) or spin-like (σ ) is clarified
in figure 2, where we schematically sketch the effect of varying l or σ on the constrained
order-parameter profile. Varying the value of l essentially shifts the location of the interface
(figure 2(a)), and hence we identify l with the interface location. Varying σ distorts the
shape of the interface via the enhancement of the profile in a vertical direction (figure 2(b)).
Since this corresponds to a local perturbation in the average value of the magnetization we
associate this coordinate with a local variation in the spins. In general the Xi(y) in (17)
will be composed of some combination of the two using an angle δ to describe the relative
contributions of the interfacial- and spin-like components, where δ = π/2 corresponds to an
interfacial-like coordinate and δ = 0 corresponds to a spin-like one (see figure 3). Coordinates
parametrized in this way have been termed proper collective coordinates, and the problem
answered by Parry and Swain was to determine which is the ‘optimal’ choice of angle for a
given collective coordinate. This is determined by selecting the angle which yields the most
accurate Gaussian approximation for fluctuations [3] and corresponds to the direction normal
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zx z

m(z)

δ

Figure 3. Schematic representation of the angle δ which determines the character of a collective
coordinate defined at position zX . The dashed line (corresponding to δ = 0) represents a spin-like
choice, while the dotted line (δ = π/2) represents a purely interfacial-like collective coordinate.

to the order parameter profile. This can be understood intuitively as the choice which accesses
the largest region of magnetization phase space for a fluctuation of given magnitude.

The conclusion of this paper is that the interfacial-like coordinate l2(y) is a suitable choice
for the upper field for both complete and critical wetting, while the lower field X1(y) changes
continuously from an interfacial- to a spin-like coordinate as the temperature is decreased
towards TW . With this optimal choice the relevant stiffness component 
11 in (17) is always
finite and so the problems associated with a vanishing momentum cutoff no longer arise.

2.5. Summary

In summary, recent advances have shown that it is appropriate to replace the capillary wave
model by a two-field model which includes a description of order-parameter fluctuations near
the wall. Furthermore a generalized choice of collective coordinate will be necessary in order
to describe both complete and critical wetting adequately. Finally the work of FJ demonstrates
that the relevant stiffness coefficients in (17) should contain a weak dependence on the collective
coordinates, which may have an important effect on critical behaviour. To date this coordinate
dependence has been largely ignored, for example in the studies of the renormalized capillary
parameter, and it is the aim of this paper to establish the role it plays using a suitably extended
RG approach.

3. Nonlinear renormalization group analysis

In this section we derive a nonlinear functional RG scheme suitable for dealing with a
generalized two-field effective Hamiltonian such as (17). For convenience we redefine our
initial bare Hamiltonian here as

H(2)[X1, X2] =
∫ "

dy { 1
2 
1(X1, X2)(∇X1)2 + 
3(X1, X2)(∇X1) · (∇X2)

+ 1
2 
2(X1, X2)(∇X2)2 + W(X1, X2)} (18)

where the Xi(y) are the generalized coordinates discussed in the last section and we have
explicitly highlighted the dependence on a momentum cutoff ", which we may assume is the
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same for both proper collective coordinates and is essentially the same cutoff used in the simple
capillary wave model [3]. We further separate out the position-dependent contributions to the
stiffness coefficients by writing


i(X1, X2) = 
i∞ + �
i(X1, X2) i = 1, 2, 3. (19)

The constant contribution 
i∞ may be identified as follows: for each collective coordinate
Xj (y) there is a corresponding surface Zj (y) at which the appropriate constraint is defined,

i∞ is then given by the limit of 
(X1, X2) as Z1 → 0 and Z2 → ∞.

The RG procedure consists of performing a partial trace in the partition function over small-
scale fluctuations, X>

i (y) (i = 1, 2) say, with wavenumbers in the range "/b < |k| < "

where b > 1 is an arbitrary rescaling factor. The partial trace over X>
1 (y) and X>

2 (y) yields
a new, intermediate Hamiltonian with momentum cutoff "/b. We must then make the scale
transformation appropriate for RG studies of unbinding transitions [11]

y → y′ = y/b Xi → X′
i = Xi/bζ (i = 1, 2) (20)

where ζ = (3 − d)/2 is the roughness exponent. This rescaling ensures that the momentum
cutoff of the intermediate Hamiltonian is returned to its original value allowing the process to
be repeated iteratively.

In general the trace over short-wavelength fluctuations described above cannot be
performed exactly and hence some form of approximation must be introduced. Here we use
an extension of the Wilson scheme developed by Lipowsky and Fisher [11], which has proved
valuable in studying unbinding behaviour. This scheme is based around the assumption that
the X>

i (y) can be expanded in terms of a complete set of eigenfunctions which are localized
both in real and momentum space (for an instructive account of this technique see [24]), and
has the advantage that by construction it is exact at linear order. Traditionally this scheme
has not allowed for the inclusion of position-dependent stiffness coefficients; however, this
problem has recently been overcome for single-field interface models with a position-dependent
stiffness [9]. Here we extend that work for our two-field model (18) further incorporating
generalized coordinates. This can be achieved without including any additional approximations
in the RG scheme and hence rather than repeating the technical details of the scheme here we
refer interested readers to [9] for a detailed description of the relevant approximations.

3.1. Recursion relations and flow equations

In this subsection we detail the key results found from applying the RG method outlined
above. In particular we begin with the recursion relations which describe how the binding
potential and stiffness coefficients are renormalized under the scheme. To this end we note
that the initial potential W (0)(l1, l2) ≡ W(l1, l2) and position-dependent stiffness contributions
�


(0)
i (l1, l2) ≡ �
i(l1, l2) (i = 1, 2, 3) are renormalized via successive applications of

W (N+1)(l1, l2) = RW [W (N)(l1, l2), �

(N)
1 (l1, l2), �


(N)
2 (l1, l2), �


(N)
3 (l1, l2)] (21)

and

�

(N+1)
i (l1, l2) = R�
i

[W (N)(l1, l2), �

(N)
1 (l1, l2), �


(N)
2 (l1, l2), �


(N)
3 (l1, l2)]

i = 1, 2, 3. (22)

Before defining the precise form of these recursion operators it is convenient to introduce the
following functions:

g(x1, x ′
1; x2, x ′

2) = W(x1 + x ′
1, x2 + x ′

2) + W(x1 − x ′
1, x2 − x ′

2) (23)

fi(x1, x ′
1; x2, x ′

2) = �
i(x1 + x ′
1, x2 + x ′

2) + �
i(x1 − x ′
1, x2 − x ′

2) (24)
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where the latter equation is valid for i = 1, 2, 3. Finally we define

E(x1, x ′
1; x2, x ′

2) = exp

{
− 1

2

2∑
i=1

[
1 +

fi(b
ζ x1, x ′

1; bζ x2, x ′
2)

2
i∞

](
x ′

i

ãi

)2

−
[

1 +
f3(bζ x1, x ′

1; bζ x2, x ′
2)

2
3∞

](
x ′

1x ′
2

ã2
3

)
− 1

2ν̃
g(bζ x1, x ′

1; bζ x2, x ′
2)

}
(25)

where

ν̃ = ν̃(b) = kBT

∫ "

"/b

dd−1k

(2π)d−1
(26)

and the ã2
i are ‘arbitrary’ lengthscales. More precisely there is a single arbitrary lengthscale

because one finds that the ã2
i are related via 
1∞ã2

1 = 
2∞ã2
2 = 
3∞ã2

3 and, as we shall show
later, this lengthscale can be fixed by demanding that the RG procedure should be exact at
linear order, yielding

ã2
i = ã2

i (b) = kBT


i∞

∫ "

"/b

dd−1k

k2(2π)d−1
i = 1, 2, 3. (27)

Using these definitions the recursion operators are simply defined as

RW ≡ −ν̃bd−1 ln

[ ∫ ∞

−∞

∫ ∞

−∞

dX′
1dX′

2

2πã1ã2

√(
1 − 
3∞2


1∞
2∞

)
E(X1, X′

1; X2, X′
2)

]
(28)

and

R�
i
≡
∫∞
−∞

∫∞
−∞ dX′

1 dX′
2 fi(b

ζ X1, X′
1; bζ X2, X′

2)E(X1, X′
1; X2, X′

2)

2
∫∞
−∞

∫∞
−∞ dX′′

1 dX′′
2 E(X1, X′′

1 ; X2, X′′
2)

(29)

for i = 1, 2, 3.
These recursion relations are an effective starting point for numerical studies of the RG

flow where (21) and (22) may be solved repeatedly for fixed b > 1, in an analogous manner
to previous single-field studies [9, 11]. However, for analytic studies the recursion operators
are somewhat unwieldy and it is often preferable to study the flow equations resulting from
considering the infinitesimal rescaling limit b = et , t → 0. Applying this limit to the equations
above yields the following coupled flow equations:

∂W

∂t
= (d − 1)W + ζX1

∂W

∂X1
+ ζX2

∂W

∂X2

+8(d) ln


 ( ∂2W

∂X2
1

+ "2
1)( ∂2W

∂X2
2

+ "2
2) − ( ∂2W
∂X1∂X2

+ "2
3)2

(
1∞
2∞ − 
3∞2)"4


 (30)

and
∂
i

∂t
= ζX1

∂
i

∂X1
+ ζX2

∂
i

∂X2
+ 8(d)

×

 ( ∂2W

∂X2
1

+ "2
1) ∂2
i

∂X2
2

+ ( ∂2W

∂X2
2

+ "2
2) ∂2
i

∂X2
1

− 2( ∂2W
∂X1∂X2

+ "2
3) ∂2
i

∂X1∂X2

( ∂2W

∂X2
1

+ "2
1)( ∂2W

∂X2
2

+ "2
2) − ( ∂2W
∂X1∂X2

+ "2
3)2




(31)

for i = 1, 2, 3, and where 8(d) = kBT "d−1/[(4π)( d−1
2 )9( d−1

2 )].
An intriguing feature of these equations is that it is the full stiffnesses 
i(X1, X2) which are

involved rather than just the position-dependent contributions �
i(X1, X2). This has not been
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observed in previous studies simply because the effect is only apparent at quadratic order or
above in the stiffnesses, and has therefore not been accessible in the earlier linear RG analyses
which have been applied to analyse the effect of position-dependent stiffness contributions.
However the division embodied in (19) is primarily employed as a mathematical aid to apply
the RG and it seems appropriate that the governing equations for the RG flow should depend
on the full stiffness contributions. Finally in this subsection we observe that the flow equations
may be cast into a convenient matrix form. To this end we explicitly write the stiffness matrix

Σ(X1, X2) =
(


1(X1, X2) 
3(X1, X2)


3(X1, X2) 
2(X1, X2)

)
(32)

and define

U =
(

∂2W

∂X2
1

+ "2
1
∂2W

∂X1∂X2
+ "2
3

∂2W
∂X1∂X2

+ "2
3
∂2W

∂X2
2

+ "2
2

)
U∞ = "2

(

1∞ 
3∞

3∞ 
2∞

)
. (33)

In addition we define a vector operator

δ̂ =
( ∂

∂X2

− ∂
∂X1

)
. (34)

With these definitions in place the flow equations (30) and (31) may be written as
∂W

∂t
= (d − 1)W + ζX1

∂W

∂X1
+ ζX2

∂W

∂X2
+ 8(d) ln

[
det U

det U∞

]
(35)

and
∂Σ
∂t

=
{

ζX1
∂

∂X1
+ ζX2

∂

∂X2
+

8(d)

(det U)
(Uδ̂)T δ̂

}
Σ. (36)

While this formulation does not add any further physical insight to the relevant importance of
the various terms it does provide a particularly compact presentation, and should be considered
the main result of this section.

3.2. Limiting cases

In this section we check our RG scheme recovers known results in some special limiting cases.
First we note that in the limit 
1∞ → ∞ the fluctuations of the lower surface are completely
suppressed. As a result the only fluctuating field is X2, and the two remaining functions W

and 
2 depend only on X2. Further, in this limit the flow equations above reduce to

∂W

∂t
= (d − 1)W + ζX2

∂W

∂X2
+ 8(d) ln

[
1 +

1

"2
2∞

{
∂2W

∂X2
2

+ "2�
2

}]
(37)

and

∂
2

∂t
= ζX2

∂
2

∂X2
+

8(d)

"2
2∞

∂2
2

∂X2
2

[
1 +

1

"2
2∞

{
∂2W

∂X2
2

+ "2�
2

}]−1

(38)

which precisely recovers the single-field Hamiltonian results found in previous studies [9].
Finally we confirm that the nonlinear scheme described above is exact to leading order

in both the binding potential and position-dependent stiffness contributions. As a simple
demonstration we consider the special case where 
3∞ = 0 and �
i ≡ 0 ∀i. In this case
we simply have a recursion relation for the binding potential W(X1, X2), which we expand to
linear order to find

W (b)(X1, X2) = bd−1
∫ ∞

−∞

∫ ∞

−∞

dX′
1 dX′

2

2πã1ã2
W (0)(X′

1, X′
2) exp

{
− 1

2

2∑
i=1

(
bζ Xi − X′

i

ãi

)2}
.

(39)
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This equation is in perfect agreement with the exact linear functional RG result for the
binding potential provided we make the identification (27) for ã2

i [18]. We can repeat this
exercise without making any special choice for the stiffnesses and again precisely recover the
corresponding linear RG recursion relations; however, we omit the details here for brevity.
Instead we concentrate on the corresponding linear flow equations, which, from (35) and (36),
can be read off as

∂W

∂t
= (d − 1)W + ζX1

∂W

∂X1
+ ζX2

∂W

∂X2
+ Ã2

1

(
∂2W

∂X2
2

+ "2�
2

)

+Ã2
2

(
∂2W

∂X2
1

+ "2�
1

)
− 2Ã2

3

(
∂2W

∂X1∂X2
+ "2�
3

)
(40)

and

∂�
i

∂t
= ζX1

∂�
i

∂X1
+ ζX2

∂�
i

∂X2
+ Ã2

1
∂2�
i

∂X2
2

+ Ã2
2
∂2�
i

∂X2
1

− 2Ã2
3

∂2�
i

∂X1∂X2
i = 1, 2, 3

(41)

and where the Ã2
i are defined as

Ã2
i = kBT "d−3

(4π)
d−1

2 9( d−1
2 )


i∞
(
1∞
2∞ − 
3∞2)

i = 1, 2, 3. (42)

Once again these results are fully consistent with earlier linear RG analyses [18] providing
further support for the nonlinear RG scheme employed in this section.

In conclusion we have described a nonlinear functional RG scheme which for the first
time allows the study of two-field effective models which include position-dependent stiffness
contributions. The main results are compactly embodied in the flow equations (35) and (36).
We have confirmed that this scheme recovers known single-field results in the appropriate limit
and that it is exact at linear order. We further observe that if the position dependence of the
stiffness coefficients is ignored the flow equations correctly reduce to those found in simpler
two-field nonlinear RG analyses where the position-dependent stiffnesses were excluded [20].
Hence in conclusion we believe there is compelling evidence that our scheme is generally
applicable to the two-field model (18).

4. Applications to complete and critical wetting

Motivated by the RG analysis of the last section we now look to address some of the outstanding
issues in the study of complete and critical wetting. Firstly we ask how the inclusion of
position-dependent stiffness coefficients affects the renormalization of the capillary parameter
near complete wetting discussed in section 2.3. Later we investigate the impact of including
multiple fields on the prediction of fluctuation-induced first-order transitions at critical wetting.

4.1. Renormalization of the capillary parameter revisited

The goal of this subsection is to apply the RG scheme to determine how the position-dependent
contributions to the stiffness enter the renormalization of the capillary parameter, and what
effect these changes will have for predictions of critical behaviour. Thus we restrict our
attention to the marginal dimensionality d = 3 and consider temperatures deep in the complete-
wetting regime, where the effect of the capillary parameter renormalization is most pronounced.
For this choice we know from section 2.4 that we may safely identify both collective coordinates
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as interfacial-like, Xi(y) ≡ li(y) i = 1, 2. In order to gain some insight into how the position-
dependent stiffnesses enter the capillary parameter renormalization we start by examining the
simplest generalization of (13) that includes some position dependence. Namely,

H(2)[l1, l2] =
∫

dy { 1
2 
2(l2 − l1)(∇l2)2 + 1

2 
̃wβ(∇l1)2 + 1
2 r0l2

1 + W(l2 − l1)} (43)

where 
2(l) = 
αβ + �
2(l) and �
2(l) → 0 as l → ∞. This choice is motivated by
explicit calculations of the stiffness matrix elements which show that, provided the field l1
is located close to the wall, the stiffnesses only depend on the relative distance l2 − l1 [14].
Furthermore, since the leading contribution to the effective capillary parameter arises from
the upper field l2 it seems reasonable to assume that only including position dependence in

2 will provide a plausible guide to the importance of including position dependence for the
minimum mathematical effort. We address the issue of what happens if (43) is replaced by a
model including the full position dependence of stiffness coefficients, including the cross-term

3(l2 − l1)(∇l1) · (∇l2), at the end of this subsection.

Following the discussion in section 2 we will use the RG flow equations to indicate the
renormalization of the capillary parameter. With this in mind we first clarify how the capillary
parameter ω may be identified in the nonlinear flow equations for a single-field model with a
position-dependent stiffness coefficient. In this case we have two coupled equations, one for
the binding potential W(l) and one for the position-dependent stiffness contribution 
(l). The
appropriate equations can be read off from (37) and (38) to be

∂W (t)(l)

∂t
= 2W (t)(l) +

kBT "2

4π
ln

[

(t)(l)


αβ

+
4πω

kBT "2

∂2W (t)(l)

∂l2

]
(44)

and

∂
(t)(l)

∂t
= 4πω

∂2
(t)(l)

∂l2

[

(t)(l)


αβ

+
4πω

kBT "2

∂2W (t)(l)

∂l2

]−1

(45)

with ω given by (7), and where all lengths are measured in units of the bulk correlation length
of the wetting phase. The remaining explicit dependence on 
αβ essentially fixes an energy
scale and can be removed by rescaling. For example, defining S(t)(l) ≡ 
(t)(l)/
αβ results
in equations for W and S analogous to (44) and (45) but with the 
αβ dependence removed.

We can now compare with the results for our reduced two-field model (43). In this
model we may treat the purely Gaussian term 1

2 r0l2
1 exactly as has been done in previous

studies [18, 22]. The final results can again be generally written in the compact form (35)
and (36) but where the contribution "2
1∞ in the first elements of the matrices U and U∞
(see equation (33)) should be replaced by ("2
1∞ + r0). Including this modification yields
the following coupled flow equations for the binding potential W(l) and position-dependent
stiffness contribution 
2(l) where l ≡ l2 − l1:

∂W (t)(l)

∂t
= 2W (t)(l) +

kBT "2

4π
ln

[



(t)
2 (l)


αβ

+
4π

kBT "2

(
ω + ω1



(t)
2 (l)


αβ

)
∂2W (t)(l)

∂l2

]
(46)

and

∂

(t)
2 (l)

∂t
= 4π

(
ω + ω1



(t)
2 (l)


αβ

)
∂2
(t)(l)

∂l2

×
[



(t)
2 (l)


αβ

+
4π

kBT "2

(
ω + ω1



(t)
2 (l)


αβ

)
∂2W (t)(l)

∂l2

]−1

(47)
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where ω1 is given by (16). Comparing these last two flow equations with the preceding pair
reveals that including the lower field l1 leads to the capillary parameter ω being replaced by
ω+ω1


(t)
2 (l)/
αβ . The nonlinear RG thus reveals an additional contribution ω1�


(t)
2 (l)/
αβ

not accessible in earlier linear analyses. By including nonlinear effects and position-dependent
stiffness contributions we identify the transient flow of the effective capillary parameter as
carried by the t-dependence in 


(t)
2 (l). However, the critical behaviour at complete wetting is

determined purely by the fixed-point behaviour of the binding potential and stiffness and so
we must address how these functions evolve under the RG flow.

Solving the flow equations analytically is beyond the scope of this paper, but we can
obtain the information we need from a fixed-point study. Following the procedure described
by Lipowsky [25] one can integrate proposed fixed-point solutions forward from small l

looking for solutions which match with the known large-l behaviour, which can be determined
from linearizing the flow equations. A limited number of fixed-point pairs, W ∗(l) and 
∗

2 (l)

say, are identified and in each case we find that 
∗
2 (l) is constant ∀l. For large l we know


2(l) → 
αβ from our definitions and so at the fixed points we must identify 
∗
2 (l) ≡ 
αβ .

With this determined the fixed-point binding potential W ∗(l) is found to have the same form
as determined in simple single-field studies but with the capillary parameter replaced by
ωeff = ω + ω1. Hence although the transient form of the renormalized capillary parameter
is modified by the inclusion of a position-dependent stiffness, the relevant results for critical
behaviour are again only dependent on ωeff = ω + ω1 and so the results of earlier studies
described in section 2.3 are fully supported by our analysis.

Given the results found above from including a position dependence in just the 
2 stiffness,
one may anticipate that including position dependence in the other stiffness coefficients will
not affect the ω-renormalization. We show that this is the case by considering a more general
effective interface model. Thus in (43) we replace 
̃wβ by 
1(l) = 
̃wβ + �
1(l) and include
a cross-term 
3(l)(∇l1) · (∇l2), where once again l ≡ l2 − l1. We further note that in the limit
of infinite separation l → ∞ there is no interaction between the two interfaces and so quite
generally 
3(l) → 0 as l → ∞. For this model a slightly more involved calculation again
reveals a capillary parameter renormalization where in the RG flow equations

ω → ω
(t)

eff = kBT "2

4π

[
("2


(t)
1 + r0) + "2


(t)
2 − 2"2


(t)
3

("2
̃wβ + r0)"2
αβ

]

= ω

[
("2


(t)
1 + r0) − "2 


(t)
3

"2
̃wβ + r0

]
+ ω1

[



(t)
2 − 


(t)
3


αβ

]
. (48)

Once again it is only the fixed-point (i.e. t → ∞) value of ω
(t)

eff which is important for critical
behaviour. Noting that 


(t)
1 (l) → 
̃wβ , 


(t)
2 (l) → 
αβ and 


(t)
3 (l) → 0 for t → ∞ shows

that at the fixed point ωeff = ω + ω1. Hence as anticipated, in terms of critical behaviour,
the capillary parameter renormalization is not affected by the inclusion of position-dependent
stiffness coefficients.

4.2. Fluctuation-induced first-order transitions

The final topic we wish to study in this paper is the effect of including a second field in the
interface model upon the FJ prediction of fluctuation-induced first-order transitions near critical
wetting in three dimensions, as discussed in section 2.1. In particular we want to know whether
this so-called stiffness instability mechanism is relevant in the two-field model, and if it is we
wish to determine whether the effect is stronger, weaker or unchanged compared to the single-
field predictions. This is particularly important since the mechanism is currently predicted to
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be relevant in a region of parameter space (in particular a temperature range) whose border is
close to the location where many of the simulation studies are performed [7, 8]. Hence any
weakening of the predictions will greatly reduce the likelihood that this mechanism will play
a role in interpreting future simulation results.

Since we are interested in the approach T → TW we know from section 2.4 that the
appropriate choice of collective coordinates for our two-field model is a spin-like coordinate
near the wall X1(y) = σ(y), and an interfacial coordinate at the unbinding interface
X2(y) = l(y). Hence we consider the Hamiltonian

H(2)[σ, l] =
∫

dy { 1
2 
1(∇σ)2 + 1

2 
2(∇l)2 + 
3(∇σ) · (∇l) + W(σ, l)} (49)

where quite generally 
i = 
i(σ, l), i = 1, 2, 3. Recall that the stiffness instability
mechanism was due to terms of O(le−2κl) in the stiffness coefficient 
2 destabilizing the
MF critical wetting transition. We further know from explicit calculations (see [3, 14] and
later) that in the two-field theory the dominant position-dependent contribution to the stiffness
matrix is O(le−κl), which arises in 
3. To determine whether this order contribution is likely
to be significant we first return to the nonlinear RG flow equations (30) and (31). Rather
than attempting to numerically solve the system of four coupled nonlinear partial differential
equations, which would require significant computational effort, we simply use the equations to
try to gauge the relevant importance of the various stiffness contributions on the renormalized
binding potential. To this end we consider the bare contribution to the expression (cf (30))(

∂2W

∂σ 2
+ "2
1

)(
∂2W

∂l2
+ "2
2

)
−
(

∂2W

∂σ∂l
+ "2
3

)2

(50)

which appears in the flow equation for W , and compare this with the corresponding single-field
contribution ∂2W

∂l2 + "2
2. Evaluating (50) in a double-parabola approximation (see below for
further details) we conclude that the lower stiffness 
1 does not contribute to the leading-order
terms, while 
3 appears at least as important as 
2 and hence may significantly affect the
stiffness instability mechanism. Clearly such observations are at best indicative of how the
stiffnesses may enter the full analysis and are insufficient to provide quantitative or qualitative
predictions.

To remedy this we provide a simple calculation based on a single-field effective interface
model derived from (49) by tracing out the lower coordinate field σ . We start by evaluating
the various terms in (49) using the reliable double-parabola approximation, which involves
modelling the free-energy density �(m) in (2) by two parabolas [8, 26]. This calculation
yields the stiffnesses and binding potential in terms of the planar constrained order-parameter
profile mπ (σ, l) as follows:


1(l) =
∫ ∞

0
dz

(
∂mπ

∂σ

)2

= K

2κ(1 − e−2κl)2
[(1 − e−4κl) − 4(κl)e−2κl] (51)


2(σ, l) =
∫ ∞

0
dz

(
∂mπ

∂l

)2

= 
αβ − 1

2
Kκm2

β

+
Kκ[(1 − e−4κl) − 4(κl)e−2κl][mβ(1 + e−2κl) + 2(σ − mβ)e−κl]2

2(1 − e−2κl)4
(52)


3(σ, l) =
∫ ∞

0
dz

(
∂mπ

∂σ

)(
∂mπ

∂l

)

= K(κl − 1)e−κl

[
mβ + 2(σ − mβ)e−κl + mβe−2κl

(1 − e−2κl)2

]
(53)
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and W(σ, l) is given by the analogue of (5), yielding

W(σ, l) = h̄l + 1
2 (Kκ + c)(σ − [τ + mβ])2

+
Kκ

2

[
4mβ(σ − mβ)e−κl + 2(m2

β + [σ − mβ]2)e−2κl

1 − e−2κl

]
(54)

where τ = (h1−cmβ)/(c+Kκ) is a measure of the deviation from the MF critical wetting phase
boundary. We note from (51) that in the double-parabola approximation the lower stiffness

1 is independent of the field σ . We now write σ(y) = σ0 + δσ (y) where σ0 = τ + mβ is
the equilibrium value of σ(y), and can expand the above functions about σ = σ0. We further
define an effective single-field model Heff [l] via

exp(−βHeff [l]) =
∫

D(δσ ) exp(−βH(2)[σ, l]) (55)

and note that in the double-parabola approximation this trace can be performed exactly as only
Gaussian terms are involved.

The resultant Hamiltonian at the square gradient level is identical in form to the FJ
model (3) with Heff [l] = ∫

dy { 1
2 
eff(l)(∇l)2 + Weff(l)}. The effective binding potential

is identical at all orders to that predicted by the FJ theory with

Weff = h̄l +
2Kκmβτe−κl + [Kκτ 2 + KκGm2

β]e−2κl

1 − Ge−2κl
(56)

where G = (c − Kκ)/(c + Kκ) and 0 < G < 1 [27]. The effective stiffness has the same form
as the corresponding FJ parameter


eff = 
αβ + 2Kκmβτe−κl + (s20 + s21κl)e−2κl + · · · (57)

but in contrast with the binding potential, the coefficients s20, s21 (and higher-order coefficients)
are different from those found in the FJ theory with

s20 = 1
2 Kκm2

β(9 − 2G − G2) + 2Kκτ 2

s21 = Kκm2
β(2G − 4).

(58)

The modifications to the leading-order term, s21, can be directly attributed to the contribution
from 
3(σ, l)—hence if 
3 in (53) is replaced by zero we precisely recover the FJ expression
for s21. Conversely the lower stiffness 
1(l) only contributes to s20 and higher-order terms, in
complete accord with our earlier observations based on the RG equations.

It is now straightforward to compare the predictions for the stiffness instability mechanism
from the two-field theory with those from the original single-field theory. If the capillary
parameter satisfies 1

2 < ω < 2, which we believe to be the case near critical wetting, then FJ
predict that the important quantity is [7, 8]

Q ≈ |s21|
w20 + s20

(59)

where w20 is the coefficient of the O(e−2κl)-term in the binding potential. For sufficiently large
Q the bare critical wetting transition is predicted to be driven fluctuation-induced first order,
while for smaller Q the transition remains critical. Here we need not concern ourselves with
determining the tricritical value separating these two regimes. Rather we simply compare the
value of the parameter in our effective theory, Qeff say, with the corresponding FJ prediction,
which we denote QFJ. Terms proportional to τ vanish on the approach to the transition so
that Q is essentially just a function of the surface enhancement c. We find that for all c

which are consistent with MF critical wetting Qeff > QFJ. Hence we are more likely to
be in the fluctuation-induced first-order regime and so the stiffness instability mechanism is
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strengthened by the inclusion of a lower field in our interface model. The size of the increase is
relatively small with Qeff typically 10–20% larger than the corresponding QFJ; however, recall
a change of this magnitude in the other direction would have greatly reduced the applicability
of the mechanism.

Hence we conclude that including a second field in the interface model tends to strengthen
the instability mechanism predicted by FJ. We have further determined that the important
changes are due to the cross-term stiffness 
3, with the lower field stiffness 
1 having little
impact on the results.

5. Discussion and conclusions

In this paper we have studied the effect of combining several of the recent advances in effective
interface models for wetting transitions, namely position-dependent stiffness coefficients and
multi-field theories, to determine their impact on complete and critical wetting in three
dimensions. Much of our analysis has been based on a nonlinear RG scheme which for the
first time allows for both multiple fields and position-dependent stiffnesses. We have shown
that the coupled flow equations arising from this RG scheme can be cast into a compact matrix
form (35), (36).

We have used the RG to study the renormalization of the capillary parameter for complete
wetting which has previously been predicted for simple two-field models. In particular we
derived a new expression for the capillary parameter, which includes nonlinear terms which
have not previously been accessible. We have further determined the transient form of the
capillary parameter during the RG flow, which has not been observed before. However, the
fixed-point value which is essential for determining critical behaviour is shown to be identical to
that previously predicted. Thus our analysis shows that the capillary parameter renormalization
is a robust mechanism.

Finally we have examined the effect of including extra fields on the Fisher–Jin prediction
of a stiffness instability mechanism near critical wetting. Motivated by the RG equations we
have used a simple double-parabola calculation to show that the additional field strengthens the
instability mechanism. Hence the likelihood of finding fluctuation-induced first-order wetting
transitions is increased. We have shown that the important parameter in this strengthening is
the cross-term stiffness 
3, which also yields the dominant position-dependent contribution
to the stiffness matrix.
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